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Classic synchronous consensus algorithms are leaderless in that processes exchange proposals, choose 
the maximum value and decide when they see the same choice across a couple of rounds. Indulgent 
consensus algorithms are typically leader-based. Although they tolerate unexpected delays and find 
practical applications in blockchains running over an open network like the Internet, their performance 
is highly dependent on the activity of a single participant.
This paper asks whether, under eventual synchrony, it is possible to deterministically solve consensus 
without a leader. The fact that the weakest failure detector to solve consensus is one that also eventually 
elects a leader seems to indicate that the answer to the question is negative. We prove in this paper that 
the answer is actually positive.
We first give a precise definition of the very notion of a leaderless algorithm. Then we present three 
indulgent leaderless consensus algorithms, each we believe interesting in its own right: (i) for shared 
memory, (ii) for message passing with omission failures and (iii) for message passing with Byzantine 
failures.
Finally, we implement a Byzantine fault tolerant (BFT) state machine replication (SMR), that is leaderless. 
Our empirical results demonstrate that it is faster and more robust than HotStuff, the recent BFT SMR 
algorithm used in the Facebook Libra blockchain when deployed in a wide area network.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

Consensus algorithms that are designed for an eventually syn-
chronous system, coined indulgent algorithms, tolerate an ad-
versary that can delay processes for an arbitrarily long period 
of time [36,30,7,39,29,28,2,13,19,46,45]. Recently, these algorithms 
gained traction to maintain blockchain safety despite communica-
tion delays [12,47,20]. A common characteristic of these algorithms 
is that they all rely on a leader. Essentially, the leader helps pro-
cesses converge towards a decision and it usually does so in a fast
manner when the system is initially synchronous and there is nei-
ther failure nor contention. The drawback arises in the other cases: 
as the leader slows down, so does its consensus execution.
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Basically, the requirement for a leader in existing indulgent al-
gorithms represents a weakness that the adversary can exploit to 
significantly delay any decision. Accurately detecting a faulty leader 
is impossible during asynchronous periods. Moreover, the choice 
of the timeout to suspect a faulty leader and replace it impacts 
performance drastically [30,41], sometimes by two orders of mag-
nitude [28]. Besides, replacing the leader requires a view-change 
protocol that is so complex that research prototypes often omit 
it [21] or suffer from errors [2].

With the advent of blockchains aimed at running in open net-
works, various efforts have been recently devoted to minimize the 
role of the leader in an eventually synchronous system. One idea is 
to change the leader frequently even if it is not suspected to have 
failed [46,13]. Another is to bypass the leader bottleneck by having 
multiple proposers [19,45,17] before reverting to a weak coordina-
tor to converge. A third one is to tolerate multiple leaders for dif-
ferent consensus instances [36,39,28], however, it only eliminates 
the leader from the state machine replication (SMR) algorithm, not 
from the underlying consensus algorithm for a single SMR slot. 
None of these approaches manages to eliminate the leader.
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This raises a fundamental question. Is it possible to eliminate 
the leader from a deterministic indulgent consensus algorithm? 
Two reasons might lead to believe that the answer is negative. 
First, the weakest failure detector to solve consensus has been 
shown to be an eventual leader [16]. Second, when seeking the 
weakest amount of synchrony needed to solve consensus, it was 
shown that one correct process must have as many eventually 
timely links as there can be failures (some sort of leader) [3,11].

The main contribution of this paper is to show that it is actually 
possible to devise and implement a leaderless indulgent consensus 
algorithm.

First, to address this question, we formally define the notion of 
“leaderless”, that has been informally understood as the ability to 
cope with the delay caused by a malicious process [10,33,19,42]. 
We believe this definition to be of independent interest. Intu-
itively, a leaderless algorithm is one that should be robust to the 
repeated slow-downs of individual processes. We introduce the 
synchronous−k (which reads “synchronous minus k”) round-based 
model where executions are (eventually) synchronous and at most 
k < n processes can be suspended per round. We define a leader-
less algorithm as one that decides in an eventually synchronous−1
(denoted by �synchronous−1) system. In a synchronous−1 sys-
tem, the classical idea of exchanging values in rounds and adopting 
the maximum one would not work, because the adversary can sus-
pend the process with the maximum value for as long as it wants.

Then we present three leaderless consensus algorithms, each 
for a specific setting. The first algorithm, called Archipelago,1 works 
in shared memory and builds upon a new variant of the clas-
sical adopt-commit object [26] that returns maximum values to 
help different processes converge towards the same output. In-
terestingly, the algorithm requires n ≥ 3 processes, which is not 
common for shared memory algorithms. The second algorithm is 
a generalization of Archipelago in a message passing system with 
omission failures. The third algorithm, called BFT-Archipelago, is a 
generalization of Archipelago for Byzantine failures. This algorithm 
shares the same asymptotic communication complexity as a classic 
Byzantine fault tolerant consensus algorithm [15] and can execute 
optimistically a fast path to terminate in two message exchanges 
under good conditions. Interestingly, all our algorithms are optimal 
both in terms of resilience and time complexity.

Finally, we propose a State Machine Replication (SMR) imple-
mentation of BFT-Archipelago in order to demonstrate the practi-
cality of our approach. To this end, we deploy the BFT-Archipelago 
SMR in a geo-distributed setting and compare its performance to 
the HotStuff SMR [47] that recently inspired the development of 
the Libra blockchain initially proposed by Facebook. Since the Hot-
Stuff SMR features pipelining, which allows to start a new con-
sensus instance before the preceding one is complete, we also 
implemented pipelining in the BFT-Archipelago SMR. Our results 
indicate that the BFT-Archipelago SMR outperforms HotStuff SMR 
when deployed across four distinct data centers. In addition, the 
performance of the BFT-Archipelago SMR is maintained even after 
isolated failures while the performance of HotStuff is negatively 
impacted by the same isolated failures, confirming the advantages 
of a leaderless SMR.

The rest of the paper is organized as follows. Section 2 gives 
some necessary background. Section 3 formalizes the notion of 
a leaderless consensus algorithm and explains why well-known 
leader-based consensus algorithms do not satisfy this definition. 
Section 4 presents a leaderless consensus algorithm for shared 
memory. Section 5 presents a leaderless consensus algorithm to 

1 Unlike in Paxos, whose name refers to a unique island and where a unique 
leader plays the most decisive role, in Archipelago, whose name refers to a group 
of islands, all nodes play an equally decisive role.
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tolerate omission failures in message passing. Section 6 presents 
a leaderless consensus algorithm to tolerate Byzantine failures. 
Section 7 discusses the complexities of our algorithms. Section 8
presents the experimental results of the state machine replication 
based on the Byzantine fault tolerant consensus algorithm. Sec-
tion 9 discusses related work while Section 10 concludes.

2. Preliminaries

We first consider an asynchronous shared-memory model with 
n processes P = {p1, p2, . . . , pn}. Processes have access to (an in-
finite) set R of atomic registers that can each store values from 
a set V . Initially, all registers contain the initial value ⊥. For sim-
plicity of notation, we assume that R includes an infinite set of 
single-writer multi-reader (SWMR) arrays of n registers each. We 
denote these arrays as R1, R2, . . . where a process pi can write 
locations R1[i], R2[i], . . . . Processes communicate by reading from 
and writing to atomic registers. A process is a state machine that 
can change its state as a result of reading a register or writing 
to a register. An algorithm is the state machine of each process. A 
configuration corresponds to the state of all processes and the val-
ues in all registers in R. An initial configuration is a configuration 
where all processes are in their initial state and all registers in R
contain value ⊥.

When a process p invokes a reador a writeoperation, we say 
that p performs a read or write event respectively. An execu-
tion corresponds to an alternating sequence of configurations and 
events, starting from an initial configuration. For example, in 
the execution α = C, read(r, v)p, C ′, write(r′, v ′)p′ , C ′′ we have pro-
cesses p, p′ ∈P , registers r, r′ ∈R, values v, v ′ ∈ V , and configura-
tions C, C ′, C ′′ where C is an initial configuration, and the system 
moves from configuration C to C ′ when p reads v from r and 
from C ′ to C ′′ when p′ writes v ′ to r′ . We assume that all execu-
tions are well-formed, hence for a process p to perform an event 
after configuration C in an execution, there must be a transition 
specified by p’s state machine from p’s state in C . In this work, 
we consider deterministic algorithms and hence the initial state of 
processes and the sequence of processes that take steps uniquely 
define a single well-formed execution. For the sake of simplicity, 
we represent an execution as a sequence of steps and omit the 
configurations.

An execution α′ is called an extension of a finite execution α
if α is a prefix of α′ . Two executions α and β are equal if both 
executions contain the same configurations and events in the same 
order.

Synchronous−k execution. We can now define what it means for 
an execution to be synchronous in shared-memory. Our definition 
is inspired by the notion of synchrony in a message passing model 
where there is a bound on the time needed for a message to prop-
agate from one process to another and for the receiver to process 
this message. In a message passing model, we can divide time into 
rounds [23] such that, in each round, every process p: (i) sends a 
message to every other process in the system, and (ii) delivers any 
message that was sent to p and performs local computation.

To adapt synchrony to the shared memory model, we also as-
sume that processes take steps in rounds. Specifically, in each 
round, every process pi (i) performs a write in some R j[i] and 
(ii) collects all the values written in array R j . The collect opera-
tion is useful to reason later in terms of message passing, where 
collecting from all cells of an array is similar to reading the mes-
sages received from all processes. In one round, different processes 
can read from different arrays.

More precisely, a collect by a process pi on an array R j is de-
fined as a sequence of n read events: collect(R j)pi =
read(R j[1], ·)pi , . . . , read(R j[n], ·)pi . Notation “·” indicates any 
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Fig. 1. Graphical depiction of a synchronous−1 execution.
value. We define a step of R j by a process pi as a write event and 
then a collect on R j . So, step(R j)pi =write(R j[i], ·)pi , collect(R j)pi . 
A round consists of all the write events write(R j1 [1], ·)p1 , . . . , 
write(R jn [n], ·)pn , followed by a sequence collect(R j1 )p1 , . . . ,
collect(R jn )pn of collects by the exact same processes that per-
formed a write event. Note that indices ja and jb could be 
the same for a �= b. For example, if we only consider two pro-
cesses {p1, p2}, then a round r could be the following sequence 
of events r = write(R j1 [1], ·)p1 , write(R j2 [2], ·)p2 , collect(R j1 )p1 , 
collect(R j2 )p2 .

To capture that a process is suspended in a round r, we de-
note by r|−Ps all the steps except the ones taken by processes 
in Ps . For instance, for the above sequence r, we have r|−{p1} =
write(R j2 [1], ·)p2 , collect(R j2 )p2 .

We say that an execution is synchronous−k (which reads “syn-
chronous minus k”) if α is the steps of a sequence of rounds 
r1|−Ps1

, r2|−Ps2
, r3|−Ps3

, . . . and |Psi | ≤ k for i ≥ 1. In other words, 
at most k processes can be suspended in each round. A sus-
pended process p in a round r does not perform all the events 
in r; i.e. it may perform some, most or none of the actions of 
the round, but not all of them. For this reason, we call such 
an execution “synchrony minus k”, since all processes except k
behave synchronously in each round. However, up to all of the 
n processes may, in turn, be suspended at some point during 
the execution. We say that an infinite execution α is eventually 
synchronous−k (or �synchronous−k) if an infinite suffix of α is 
equal to a synchronous−k execution. Naturally, a synchronous−k
execution for k = 0 corresponds to a fully synchronous execution, 
while synchronous−k with k > 0 allows for some asynchrony in an 
execution.

In a synchronous−k or �synchronous−k execution α, we say 
that a round r′ occurs after round r if the events of round r′ appear 
after the events of round r in α.

We say that a process p is correct in an infinite execution α
if p is not suspended forever in α. More precisely, a process p is 
correct in an infinite execution if, for every round r there exists a 
later round r′ such that process p is not suspended in r′ .

Example. Fig. 1 depicts a synchronous−1 execution for two pro-
cesses p1 and p2 that take steps in a sequence starting from round 
1 and ending in round 11. The X symbol in a round indicates that 
the process is suspended in this round. In Fig. 1, both processes 
perform steps in the first round, p1 in array R5 and p2 in R2. 
Then, in the next round, process p1 is suspended, etc.

Omission and Byzantine fault models. A process is faulty in the 
omission model if it may at some point of the execution omit 
sending some message, or in the Byzantine model if it can behave 
arbitrarily, except impersonating another process.

Consensus. In consensus [14], each process proposes a value by 
invoking a propose(v) function and then all processes have to de-
cide on a single value. Consensus is defined by the following three 
properties. Validity states that a value decided was previously pro-
posed. Agreement states that no two processes decide different 
values, and termination states that every correct process eventually 
decides. We say that a consensus algorithm decides in an execution 
α if a propose(v) function call by some process p returns in α.
97
3. Defining a leaderless algorithm

We are now ready to define a leaderless consensus algo-
rithm. We define it as a consensus algorithm that terminates 
despite an adversary suspending one process per round, defined 
as �synchronous−1 in the previous section. To the best of our 
knowledge, this is the first formal definition of what “leaderless” 
means.

This definition stems from the intuition that a unique process—
the leader—must perform some round for a “leader-based” consen-
sus algorithm to decide. In other words, a leader-based consensus 
algorithm cannot terminate if an adversary can selectively suspend 
a process the moment it becomes the leader. We thus introduce 
termination despite such an adversary as a new liveness property:

Definition 1 (Leaderless termination). A consensus algorithm A sat-
isfies leaderless termination if, in every �synchronous−1 execution 
of A, every correct process decides.

Intuitively, an algorithm that decides despite an adversary sus-
pending one process per round has to be leaderless. This is why, 
we say that a consensus algorithm is leaderless if it is a consensus 
algorithm that satisfies safety (validity and agreement) and leader-
less termination as follows.

Definition 2 (Leaderless algorithm). A consensus algorithm is lead-
erless if it satisfies validity and agreement as well as leaderless 
termination.

Leaderless termination implies termination as termination is 
simply leaderless termination in a �synchronous−0 execution. 
Hence a leaderless algorithm also satisfies termination, but termi-
nation does not imply leaderless termination.

By contrast, a consensus algorithm that is not leaderless, is 
called leader based. We extend Definition 2 to the message-passing 
model in Section 5. An important aspect of Definition 2 is that it 
makes a leaderless consensus algorithm robust against the adap-
tive behavior of a dynamic adversary. In particular, an alternative 
definition of a leaderless consensus algorithm as an algorithm that 
decides in the exact same number of rounds irrespective of which 
process crashes (or gets suspended forever), would not share the 
same robustness.

Why leaderless termination is not sufficient. An important re-
mark is now in order. Leaderless termination is not implied 
by the classical notion of termination. To illustrate this, we 
present Algorithm 1, a consensus algorithm that decides in ev-
ery synchronous−1, but that violates safety (i.e., agreement) when 
executed in an �synchronous−1 execution. Clearly, Algorithm 1
does not have a distinguished (leader) process that drives the de-
cision, and the algorithm decides in two rounds if the system is 
synchronous−1. However, this algorithm is not leaderless accord-
ing to Definition 1, because it does not tolerate asynchrony: in an 
�synchronous−1 the algorithm can violate safety.

First, we prove that Algorithm 1 satisfies validity, agreement, 
and decides in finite time in every synchronous−1 execution:

• Validity. Each process writes the proposed value in Reg[i]
(line 6) and then collects (line 7) all the values written in 
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Algorithm 1 Consensus algorithm that correctly decides in every 
synchronous−1 execution.

1: Shared state:
2: Reg[n] ← {⊥, . . . , ⊥} � array of n single-writer multi-reader registers

3: � process pi proposes value v
4: Procedure propose(v):
5: � first round
6: Reg[i] ← v
7: vals ← collect(Reg) \ {⊥}
8: if ∃〈commit, cv〉 ∈ vals then
9: dv ← cv � pi was suspended in the first round, hence adopt committed 

value
10: else
11: dv ← max({v : v ∈ vals ∨ 〈·, v〉 ∈ vals})
12:
13: � second round
14: Reg[i] ← 〈commit, dv〉
15: return dv

Reg. Hence, variable vals contains only proposed values. Then, 
if there is a 〈commit, cv〉 pair in vals the algorithm decides cv, 
stores 〈commit, cv〉 in Reg[i] and returns (lines 8, 9, and 14). 
Otherwise, the algorithm retrieves the maximum value stored 
in vals, and hence retrieves a proposed value (line 11). The 
process then stores 〈commit, cv〉 in Reg[i] and returns (line 14).

• Agreement. Algorithm 1 satisfies agreement in a model with 
n ≥ 3 processes. In a model with n ≥ 3 processes, at least one 
process p performs steps in both rounds one and two. Pro-
cess p writes 〈commit, v〉 (line 14) in the second round and the 
algorithm decides v . If multiple processes were unsuspended 
in the first round, then all of the processes retrieve the same 
maximum value (line 11), and hence write the exact same 
〈commit, dv〉 pair in the second round (line 14). Any process that 
was suspended in the first or second round, reads the commit-
ted value (line 9) and hence decides on the same value.

Then we show how Algorithm 1 could violate agreement with 
n = 2 processes, even in a synchronous−1 execution. For example, 
assume two processes p1 and p2 that propose v and v ′ respec-
tively (with v < v ′). Then, consider that process p2 is suspended in 
the first round and process p1 is suspended in the second round. 
Both processes p1 and p2 are unsuspended in the third round. In 
such an execution, p1 writes v to Reg[0] and then retrieves the 
maximum value in Reg, which is v . Then, in the second round, 
process p2 writes v ′ to Reg[1] and retrieves the maximum value 
in Reg, which now is v ′ . Hence in the third round, processes p1
and p2 decide v and v ′ respectively.

The challenge is, instead, to devise a leaderless consensus al-
gorithm that decides in finite time in every �synchronous−1 exe-
cution and never violates safety. In the next sections, we present 
three leaderless consensus algorithms that tolerate omissions in 
shared memory, omissions in message passing and Byzantine fail-
ures.

The pros and cons of being leaderless. With the property of being 
leaderless comes various advantages for practical systems: avoid-
ing leader bottlenecks [19,9] and reducing the impact of a single 
point of failure on performance [7,45] are well-known advantages 
that add to the aforementioned robustness. But are there draw-
backs of being leaderless? For example, are there fault models 
for which leaderless algorithms do not exist? Actually, we present 
several leaderless consensus algorithms that tolerate classic types 
of faults in the partially synchronous model. One might also ask 
whether leaderless algorithms induce a higher complexity than 
leader-based ones. It turns out that our algorithms are both time 
optimal and resilience optimal. In addition, our Byzantine fault tol-
erant leaderless algorithm, BFT-Archipelago, shares the same com-
munication complexity as PBFT [15] and DBFT [19], namely O (n4)
98
Algorithm 2 Leader-based consensus algorithm.
1: Shared state:
2: R[n] ← {〈⊥, 0〉, . . . , 〈⊥, 0〉} � 1 SWMR reg. per proc.

3: Local state:
4: ts ← i � for process pi

5: Procedure propose(v): � process pi proposes value v
6: while true do
7: R[i].ts ← ts
8: val ← getHighestTspValue(R)

9: if val =⊥ then
10: val ← v
11: R[i] ← 〈val, ts〉
12: if ts = getHighestTsp(R) then
13: return val
14: ts ← ts + n

bits. Note, however, that a recent leader-based consensus proto-
col [18] achieved O (n2) communication complexity, indicating that 
PBFT is not optimal, however, we are not aware of the optimal 
communication complexity of a leaderless consensus protocol. Fi-
nally, since BFT-Archipelago can be written as an Abstract [8] (see 
Section 7), it is compatible with leader-based consensus instances 
and inherits an optimal fast path in good executions.

Paxos: a counter example. Consider Algorithm 2, a leader-based al-
gorithm that, when combined with a leader election, corresponds 
to Paxos [31] in shared memory (or more specifically to Disk 
Paxos [27] with a single non-faulty disk).

All processes share an array R of n single-writer multi-reader 
(SWMR) registers (line 2), each storing a pair 〈a, b〉 associating 
value a to timestamp b. Each process also maintains a ballot 
number as a local ts value (line 4). When a process pi invokes 
propose(v), it executes a prepare phase and a propose phase [32]. 
During the prepare phase, pi stores its current timestamp value to 
R[i] (line 7) and either retrieves the value val of R associated with 
the highest timestamp (line 8), or (if no such value exists) sets val
to its own value v . During the propose phase, pi stores the pair 
〈val, ts〉 to array R[i] (line 11) and examines whether the highest 
timestamp in R is the one that pi wrote (line 12). If this is the 
case, the algorithm decides (line 13), otherwise pi increases ts and 
repeats the loop (line 14).

According to Definition 2, Algorithm 2 is leader based. In fact, 
Algorithm 2 does not terminate if an adversary suspends a process 
p when it is about to check whether its timestamp ts is the high-
est timestamp (line 12) and until some other process p′ stores a 
timestamp ts′ > ts in array R (line 7).

4. Archipelago: a leaderless consensus algorithm

In the following sections, we present a series of leaderless 
consensus algorithms. For pedagogical reason we start, in this 
section, by presenting a simple shared memory leaderless con-
sensus algorithm, called Archipelago, before its message-passing 
variant. Archipelago satisfies Definition 1 when n ≥ 3 and never 
violates safety. It builds upon a new variant of an adopt-commit 
object [26], called adopt-commit-max, whose invocations by differ-
ent processes help them converge towards the same output value 
without a leader.

Adopt-commit-max implementation. The adopt-commit object [26]
has the following specification. Every process p proposes an input 
value to such an object and obtains an output, which consists of a 
pair 〈d, v〉; d can be either commit or adopt. The following proper-
ties are satisfied:

• CA-Validity: If a process p obtains output 〈commit, v〉 or 
〈adopt, v〉, then v was proposed by some process.
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Algorithm 3 The adopt-commit-max algorithm.
1: Shared state:
2: A and B , two arrays of n single-writer multi-reader
3: registers, all initially ⊥

4: Procedure propose(v): � taken by a process pi

5: A[i] ← v � step A starts
6: S A ← collect(A) � step A ends
7: if (S A \ {⊥} = {v ′}) then � step B starts
8: B[i] ← 〈commit, v ′〉
9: else B[i] ← 〈adopt, max(S A)〉 � or step B starts

10: S B ← collect(B) � step B ends
11: if S B \ {⊥} = {〈commit, v ′〉} then
12: return 〈commit, v ′〉
13: else if 〈commit, v ′〉 ∈ S B then return 〈adopt, v ′〉
14: else return 〈adopt, max(S B )〉

• CA-Agreement: If a process p outputs 〈commit, v〉 and a process 
q outputs 〈commit, v ′〉 or 〈adopt, v ′〉, then v = v ′ .

• CA-Commitment: If every process proposes the same value, 
then no process may output 〈adopt, ·〉.

• CA-Termination: Every correct process eventually obtains an 
output.

Algorithm 3 depicts a new implementation of an adopt-commit 
object. It differs from the classic implementation [26] in that if 
the collect of A by process p that proposes v returns different 
values, then p stores 〈adopt, mv〉 to array B (line 9) instead of stor-
ing 〈adopt, v〉, where mv is the maximum of the values collected 
from A (max(S A)). Additionally, if all pairs collected from B are 
of the form 〈adopt, ·〉, then process p returns 〈adopt, mv〉, where 
mv is max(S A) (line 14). Note that Algorithm 3 is just a differ-
ent implementation of the classic implementation [26] and that 
the main properties of an adopt-commit object remain the same. 
These modifications are crucial for the leaderless termination of 
Archipelago.

Correctness of the adopt-commit-max object. We now present the 
proof of correctness of Algorithm 3, which is similar to that of 
an adopt-commit object [26]. Algorithm 3 satisfies CA-Validity (the 
max function preserves validity) and CA-Termination (Algorithm 3
does not use waiting or loops). To prove CA-Agreement and CA-
Commitment, we first prove the following lemma.

Lemma 4.1. If B contains two entries (commit, v1) and (commit, v2), 
then v1 = v2 .

Proof. Assume not. Since every process writes in A and B at most 
once, it must be that some process p1 wrote (commit, v1) and 
some other process p2 wrote (commit, v2). Thus, it must be that 
p1 wrote v1 in A, took a collect of A and only saw v1 in that col-
lect. Similarly, it must be that p2 wrote v2 in A, took a collect of A
and only saw v2 in that collect. This is impossible: since the pro-
cesses update A before collecting, it must be that either p1 saw 
p2’s value, or vice-versa. We have reached a contradiction. �
• CA-Agreement. In order for a process p to commit v , p must 

write v to A, collect A and see only entries equal to v; p must 
then write 〈commit, v〉 to B , collect B and see only entries equal 
to 〈commit, v〉 and finally return 〈commit, v〉.

Assume by contradiction that process p commits v and some 
process q commits or adopts v ′ �= v . q’s collect of B cannot in-
clude the 〈commit, v〉 entry written by p, otherwise q would 
adopt v (remember that by Lemma 4.1, q cannot see any entry 
〈commit, v ′〉 with v ′ �= v in B since p writes 〈commit, v〉 to b). 
Therefore, q’s collect of B must happen before p’s write to B . 
Furthermore, q’s collect of B must include some entry e = 〈·, v ′〉
with v ′ �= v (written either by q or some other process). But 
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15: Shared state:
16: C[0, . . . , +∞], an infinite array of adopt-commit-max
17: objects in their initial state
18: m, a max register object that initially contains 〈0, ⊥〉.
19: Note that 〈x, y〉 > 〈x′, y′〉 if x > x′ or
20: (x = x′ and y > y′)

21: Local state:
22: c � index of adopt-commit-max object, initially 0

23: Procedure propose(v):
24: while true do
25: m.write(〈c, v〉) � step R starts
26: 〈c′, v ′〉 ← m.readmax() � step R ends
27: 〈control, v ′′〉 ← C[c′].propose(v ′)
28: c ← c′ + 1
29: if control = adopt then v ← v ′′
30: else return v ′′

then p’s collect of B (which is after p’s write to B and there-
fore after q’s collect of B) will also include e, and thus p cannot 
commit v . We have reached a contradiction.

• CA-Commitment. Assume all proposed values are equal. Then 
no process can write 〈adopt, ·〉 in B; B contains only entries of 
the form 〈commit, ·〉. By Lemma 4.1, all such entries have equal 
values, so all processes that return must commit.

The Archipelago algorithm. Algorithm 4 depicts Archipelago where 
all processes share an infinite sequence of adopt-commit-max ob-
jects (C ) to ensure safety and a max register m (lines 17 to 20) 
to help with convergence. A max register r is a wait-free register 
that provides a write operation, as well as a readmax operation 
that retrieves back the largest value that was previously written to 
r [5]. Its write can be implemented by letting each process write to 
a single-writer multi-reader register whereas its readmax can be 
implemented by collecting all values written by all processes and 
taking the maximum. In a synchronous−1 execution, the processes 
converge towards one value and there is an adopt-commit-max ob-
ject where all processes propose this exact single value. Then, due 
to CA-commitment property of the adopt-commit-max object, the 
adopt-commit-max outputs 〈commit, ·〉 and Archipelago decides in 
finite time.

More precisely, Algorithm 4 performs repeatedly three steps (by 
writing and collecting as defined in Section 2) called R-step, A-step
and B-step. In the R-step (lines 25-26), each process p first writes 
〈c, v〉 to register m (line 25) and then retrieves the maximum tu-
ple 〈c′, v ′〉 stored in m (line 26). Note that values c and v are not 
necessarily equal to c′ and v ′ . In the A-step (lines 5-6), process p
proposes value v ′ to adopt-commit-max object C[c′] by invoking 
function C[c′].propose(v ′) (line 27) described in Algorithm 3 and 
sets c to the next adopt-commit-max object to be used (line 28). 
A process starts a B-step either at line 7 or 9 of Algorithm 3 and 
the subsequent collect takes place in line 10. If process p receives 
a commit response from some adopt-commit-max object (line 30), 
then process p decides and returns. Otherwise, when process p re-
ceives an 〈adopt, v ′′〉 response, it stores this result in the m register 
(line 29) and restarts.

Difference with eventual leader election, �. The cautious reader 
might think that by solving consensus in an �synchronous−1 exe-
cution with Archipelago, we could implement the � failure detec-
tor [16]. Intuitively, � ensures that eventually all correct processes 
elect the same process as their leader. More precisely, � satisfies 
two properties: (1) eventual accuracy: there is a time after which 
every correct process trusts some correct process, and (2) eventual 
agreement: there is a time after which no two correct processes 
trust different correct processes.



K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing 176 (2023) 95–113
We could then augment Algorithm 2 with � so that Algo-
rithm 2 decides in every �synchronous−1 execution. There are 
ways to implement � in crash-recovery settings, but only when 
a crashed process can recover a finite number of times [24,37,14]. 
This is in contrast with our model, where a process can be sus-
pended an infinite number of times on an infinite number of 
rounds. In other words, in our model every process is unstable [37], 
hence the existence of � in our model is impossible.

4.1. Archipelago: proof of correctness

Archipelago is a leaderless consensus algorithm. First we show 
that it satisfies the consensus properties (validity, agreement, and 
termination under �synchrony) and then we prove that it provides 
leaderless termination, which is more interesting and significantly 
more challenging. Note that Archipelago solves multi-valued con-
sensus. Naturally, we could have presented and proved correct a 
modified version of Archipelago for binary consensus. However, we 
do not believe that such an approach would simplify either the 
presentation or the proof of Archipelago as we explain later on.

Validity, agreement, termination. Algorithm Archipelago satisfies 
validity. We prove that if an adopt-commit-max object C[c] re-
turns a 〈·, v〉 tuple, then v was proposed by some process. We 
can easily show this using induction. For c = 0, this is clearly the 
case, since all the values that were proposed to C[0] are written 
in m and were initially proposed. Let c ≥ 0. Assume that for every 
adopt-commit-max object C[c′] with c′ ≤ c, C[c′] returns a value 
that was initially proposed by some process. Then, for a value v to 
be proposed to C[c + 1], this means that a process read 〈c + 1, v〉
from m (line 26). This implies that at some point, some process p
writes 〈c + 1, v〉 to m (line 25). But for this to happen, p retrieved 
〈adopt, v〉 from an adopt-commit-max object C[c′] with c′ < c + 1
and by induction, this means that v is a proposed value. Since all 
the values returned by adopt-commit-max objects are proposed, 
and Archipelago decides (line 30) upon a value that Archipelago 
retrieves from some adopt-commit-max object, Archipelago satis-
fies validity.

Algorithm Archipelago satisfies agreement. To see this, assume 
by way of contradiction that two processes p and p′ decide on 
different values v and v ′ respectively. This means that process p
returned v after receiving a 〈commit, v〉 response for an adopt-
commit-max object C[c] and process p′ received a 〈commit, v ′〉 re-
sponse for an adopt-commit-max object C[c′]. Because the adopt-
commit-max object satisfies CA-agreement, it has to be the case 
that c �= c′ , otherwise v = v ′ . Without loss of generality, assume 
that c < c′ . All the processes (including p′) that received a re-
sponse from C[c] either received 〈commit, v〉 or 〈adopt, v〉 due to 
the agreement property of the adopt-commit-max object. Hence, 
all processes that write to m (line 25), write 〈c + 1, v〉, since they 
retrieved v from C[c]. Therefore, all possible values that are pro-
posed to the C[c + 1] adopt-commit-max object, propose v , and 
hence C[c + 1] returns 〈commit, v〉. Similarly, all upcoming adopt-
commit-max-objects return 〈commit, v〉 contradicting the fact that 
C[c′] (c < c′) responds with 〈commit, v ′〉 with v ′ �= v .

4.2. Archipelago: proof of leaderless termination

It is far from obvious that Archipelago satisfies leaderless ter-
mination. As a matter of fact, Archipelago does not provide leader-
less termination for n = 2 processes. However, Archipelago satisfies 
leaderless termination for n ≥ 3 processes. Before we describe the 
proof, we introduce some auxiliary notation.

Notation. For an execution α we say that a process p takes a step 
Ai(v) when p performs an A step that belongs to adopt-commit-
max object C[i] (lines 5 and 6). We denote with A0(v) the fact 
i
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that p is the first process that performed the A step for adopt-
commit-max object C[i] in execution α. Note that a single round 
might contain multiple A0

i (v) steps taken by different processes. 
We denote with A+i (v) the fact that this step is not the first A step 
on C[i]. We denote with Bi(1, v) the B step of a process on adopt-
commit-max object C[i] that writes 〈commit, v〉 (lines 7 and 10). 
With Bi(0, v), we denote the B step of a process on adopt-commit-
max object C[i] that writes 〈adopt, v〉 (lines 9 and 10). Similarly 
to the notation of an A step, we use the notation B0

i (1, v), and 
B+i (1, v). We say that in an execution α values v1, v2, . . . , vk are 
proposed to C[i] if there are steps Ai(v j) ∀1 ≤ j ≤ k in α. We 
denote with R〈c, v〉 the R step of a process and the fact that the 
process read 〈c, v〉 as the maximum value in m (lines 25 and 26). 
As with steps A and B , we use the R0〈c, v〉 and R+〈c, v〉 notation. 
Specifically, with R0〈i, ·〉 we denote the first R step that reads 〈i, ·〉. 
Note that in this notation when we have Ai(v) and Bi(·, v), this v
is the value that is written, while in R〈c, v〉 the value v is read 
from m. Furthermore, note that R is not part of an adopt-commit-
max operation like the A and B steps and hence has no subscript.

n = 2 processes. For n = 2 processes, we can devise a synchronous
−1 execution in which the Archipelago algorithm never decides. 
This execution is depicted in Fig. 2. Fig. 2 has a pattern that re-
peats every 5 rounds (light-green boxes). In Fig. 2, processes p1
and p2 propose values v ′ and v respectively with v ′ > v . In the 
first round, process p1 is suspended, so process p2 performs an 
R step, writes 〈0, v〉, and retrieves 〈0, v〉 from m. Then, in the 
second round both processes p1 and p2 take steps. Process p1
writes 〈0, v ′〉 and retrieves 〈0, v ′〉 since 〈0, v ′〉 > 〈0, v〉. In the same 
round, p2 writes v to C[0].A[2]. Then, in the third round, when 
process p1 takes an A step it writes value v ′ in C[0].A[1] and 
when p1 collects the values written in array A (line 6), p1 sees 
that there are two different values (v and v ′) in C[0].A. Therefore, 
in the fourth round, when process p1 performs a B step, it re-
trieves back 〈adopt, v ′〉. Process p2 takes a B step in the fifth round 
after being suspended in the third and fourth rounds, p2 writes 
〈commit, v〉 in C[0].B[2], and then during the collect of B , p2 sees 
that 〈adopt, v ′〉 is written in C[0].B[1] and p2 returns 〈commit, v〉
(line 13). Afterwards, starting from the sixth round the processes 
behave in the exact same way: processes p1 and p2 propose v ′
and v to the next adopt-commit-max object respectively. This can 
happen ad infinitum and Archipelago never decides.

n ≥ 3 processes. We consider synchronous−1 executions that start 
from an arbitrary, albeit valid (i.e., state corresponds to a con-
figuration in a well-formed execution), initial state. We prove 
that in every synchronous−1 execution, irrespectively of the ini-
tial state, Archipelago terminates in finite time. Therefore, in ev-
ery �synchronous−1 execution, eventually the execution becomes 
synchronous−1 and hence Archipelago decides in finite time.

Theorem 4.2. Archipelago satisfies leaderless termination for n ≥ 3.

To prove Theorem 4.2 we first need to prove some auxiliary 
lemmas.

Lemma 4.3. If an execution α contains step R0〈i, v〉, then for any step 
R〈 j, v ′〉 with j > i that is in α, it is the case that v ′ ≥ v.

Proof. Consider an execution α that contains a step R0〈i, v〉 in a 
round r taken by process p. Then, when process p continues, p
proposes value v to adopt-commit-max object C[i]. Similarly and 
since each process retrieves the maximum value when reading ar-
ray R (line 26), any later process that performs an R step in round 
r or after r reads at least 〈i, v〉, and hence retrieves a value at least 
as great as v . Note that a process that performs an R step in round 
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. . .

p1

p2

R+〈0, v ′〉 A+
0 (v ′) B0

0(0, v ′) R+〈1, v ′〉 A+
1 (v ′) B0

1(0, v ′)

R0〈0, v〉 A0
0(v) B+

0 (1, v) R0〈1, v〉 A0
1(v) B+

1 (1, v) R0〈2, v〉

X X X X X

X X X X

Fig. 2. With 2 processes, Archipelago might never decide in a synchronous−1 execution (v ′ > v).
r cannot read 〈 j, v ′〉 with j > i and v ′ < v , since process p takes 
step R0〈i, v〉. Hence, all values that are proposed to adopt-commit-
max object C[ j] ( j ≥ i) are ≥ v and therefore for any step R〈 j, v〉
with j > i, it holds that v ′ ≥ v . �
Lemma 4.4. If an execution α contains step B0

i (1, v), then Archipelago 
decides v in α.

Proof. Assume an execution α contains step B0
i (1, v) in round r. If 

a process p takes a step Bi(·, ·), then p definitely takes the step in 
a round k with k ≥ r. Therefore, process p sees 〈commit, v〉 when 
collecting B (line 10) and either returns 〈commit, v〉 (line 12 and 
then line 30) and decides, or returns 〈adopt, v〉 (line 13). Due to 
CA-agreement, p cannot return 〈commit, v ′〉 〈adopt, v ′〉 with v ′ �= v . 
Thus, process p proposes v in adopt-commit-max object C[i + 1]. 
However, when all processes propose the same value v to adopt-
commit-max object C[i + 1], then Archipelago decides v . �
Lemma 4.5. If an execution α contains at least two steps A0

i (v) from 
processes p and p′ (p �= p′), and there is no process performing step 
A0

i (v ′) with v ′ �= v in α, then either p, or p′, or both perform step 
B0

i (1, v) in α.

Proof. Suppose that a round r contains two A0
i (v) events by pro-

cesses p and p′ respectively. Since in a round, there can be at most 
one suspended process, this means that at least one of the pro-
cesses p and p′ take a step in round r + 1. Since both processes 
p and p′ write value v in array C[i].A, and no process wrote an-
other value in C[i].A during that round, v is the only value that p
and p′ read when collecting A, and hence in the upcoming step in 
round r + 1, at least one of the two processes writes B0

i (1, v). �
Roughly speaking, the following lemma states that if an execu-

tion contains a step A0
i (v ′) where v ′ > min({v : ∃Ai(v) ∈ α}), then 

any value proposed to a later adopt-commit-max object (i.e., writ-
ten in A) is greater than min({v : ∃Ai(v) ∈ α}), namely is greater 
than the minimum value proposed in adopt-commit-max object 
C[i].

Lemma 4.6. In an execution α, consider V f = {v : ∃Ai(v) ∈ α} and let 
vm be min(V f ). If there is a step A0

i (v) ∈ α with v > vm, then for any 
step A j(v ′) ∈ α with j > i, it is the case that v ′ > vm.

Proof. Because execution α contains step A0
i (v) with v > min(V f ), 

any step A j with j > i on adopt-commit-max object C[ j] sees 
value v written in array A (line 9) and hence adopts a value v ′
with v ′ ≥ v > vm . �

To prove Theorem 4.2 we show that as Archipelago traverses 
adopt-commit-max objects, the current minimal value, among 
those values still being proposed to adopt-commit-max objects, 
eventually gets eliminated (i.e., processes only propose larger val-
ues in later adopt-commit-max objects). Specifically, we show that 
in at most three consecutive adopt-commit-max objects, the min-
imal value gets eliminated. Since we have n processes, we can 
have at most n distinct proposed values. Therefore, using at most 
3n adopt-commit-max objects, Archipelago decides in finite time. 
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From the moment of synchrony, Archipelago needs O(n) rounds to 
decide.

Towards this goal, the following lemma is useful. Lemma 4.7
captures the idea that if in an execution α, the minimum value 
proposed to an adopt-commit-max object C[i] appears in a later 
adopt-commit-max object C[ j] with j > i, then α contains a spe-
cific execution pattern. By execution pattern we mean, that some 
process has to take a step, then be suspended, then another pro-
cess has to take some step, etc.

Fig. 3 captures the fact that there is some process pa that takes 
an A0

i (vm) step and before pa performs Bi(1, vm) some other pro-
cess pb performs A+i (v) and B0

i (0, v), etc.

Lemma 4.7. In an execution α, consider V f = {v : ∃Ai(v) ∈ α} and let 
vm be min(V f ). If Archipelago does not decide in α and there is a step 
A j(vm) ∈ α with j > i, then ∃x ≥ 2 and ∃pa, pb ∈ P and round r such 
that pa, pb perform steps as depicted in Fig. 3 and there is no R〈i + 1, ·〉
step taken before round r + x + 2.

Proof. Suppose that α has no step A0
i (vm) and hence α contains 

a step A0
i (v) with v > vm . Then, due to Lemma 4.6, we know that 

for every A j(v ′) with j > i it is the case that v ′ > vm . But this 
implies that there is no A j(vm) with j > i in α and this is not the 
case we consider. Therefore, for an A j(vm) to exist in α, execution 
α must contain A0

i (vm).
Assume that process pa takes step A0

i (vm) in some round r. 
Lemmas 4.4 and 4.5 imply that if there is another A0

i (vm) step in 
α taken by some process p �= pa , then the algorithm decides. Since 
in the lemma we assume that Archipelago does not decide, we can 
exclude this case and consider that there is at most one A0

i (vm) in 
round r.

Suppose that process pa takes a step in round r + 1. Then, pro-
cess pa takes a B0

i (1, vm) step since pa was the process that first 
performed an A step on adopt-commit-max object C[i]. However, 
if process pa takes a B0

i (1, vm), due to Lemma 4.4, the algorithm 
decides. Again, we do not consider this case. Similarly, if process pa
takes a B step in round r + 2, then process pa takes a B0

i (1, vm)

step and due to Lemma 4.4, the algorithm decides. Therefore, we 
need to consider the case where process pa is suspended in both 
rounds r + 1 and r + 2. Process pa can potentially be suspended 
for more rounds, up to round r + x where x ≥ 2. Therefore, for vm
to appear in a later adopt-commit-max object C[ j] with j > i with 
an A j(vm) step, execution α has to be similar to the execution de-
picted in Fig. 4.

We now show that there cannot be an R〈i + 1, ·〉 step before 
round r + x + 2. Assume by way of contradiction that there exists 
an R〈i +1, ·〉 step before round r +x +2 in α. If multiple such steps 
exist in α, consider the one that takes place in the earliest round. 
Suppose that this R0〈i + 1, v〉 has v > vm . This means that a later 
process reads value v > vm and hence when later processes per-
form an R in some later round, they see a value (line 26) greater 
than vm and hence propose only values greater than vm to up-
coming adopt-commit-max objects (Lemma 4.3). This contradicts 
the fact that there is a j > i with A j(vm).

This means that if an R0〈i +1, v ′〉 step appears before round r +
x + 2 in α, then it has to be that v ′ = vm . Suppose that this R0〈i +
1, vm〉 is taken by some process p in round r + y. Before round 
r + y process p has to take steps Ai and Bi since p performs the 
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pa

pb

pc

.

.

.

. . . r− 1 r r+ 1 . . . r+ x−1 r+ x r+ x+1 r+ x+2 r+ x+3 . . .

· A0
i (vm) B+i (1, vm) R〈i+1, vm〉 ·

· · · · A+i (v) B0
i (0, v) ·

· · · · · · · · ·

X X X X

X X

� R〈i + 1, ·〉 step before round r + x + 2.

Fig. 3. Execution pattern that appears when the minimum value propagates to the next adopt-commit-max object (x ≥ 2).
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. . . r− 1 r r+ 1 . . . r+ x−1 r+ x r+ x+1 r+ x+2 r+ x+3 . . .

· A0
i (vm) Bi(1, vm) · ·

· · · · · · · · ·

· · · · · · · · ·

X X X X

Fig. 4. Long suspension of process pa with value vm .

� R〈i + 1, ·〉 step before round r + x + 2.

pa

pb

pc

.

.

.

. . . r− 1 r r+ 1 . . . r+ x−1 r+ x r+ x+1 r+ x+2 r+ x+3 . . .

· A0
i (vm) Bi(1, vm) · ·

· · · · · · · · ·

· · · · · · · · ·

X X X X

Fig. 5. Impossibility of an R〈i + 1, ·〉 step before round r + x + 2.
first R0〈i + 1, vm〉 step. This means that value y has to be greater 
than 2, since otherwise it implies that step Ai taken by p occurs 
in a round smaller or equal than r. However, process pa is the only 
process that takes an A0

i (vm) in round r.
Since R0〈i + 1, vm〉 occurs in round r + y, where 2 < y < x + 2, 

then p must perform an Ai(v) step in round r + y −2 and a B0
i (·, ·)

step in round r + y − 1 (p cannot be suspended between r + y − 2
and r + y because pa is already suspended). If v = vm , then p’s 
Bi step will be B0

i (1, vm) and so, due to Lemma 4.4, the algorithm 
decides (line 12 and line 30), which we assume does not happen 
in α. If v > vm , then p’s Bi step will be B0

i (0, v), which contradicts 
the fact that p does R0〈i + 1, vm〉 immediately afterwards.

Therefore, there cannot be an R〈i + 1, ·〉 step before round r +
x + 2. This is depicted in the Fig. 5 where all rounds less than 
r + x + 2 highlighted in light-red cannot contain an R〈i + 1, ·〉 step.

If between rounds r and r + x + 1 no other process performs a 
B0

i (·, ·) step, then process pa is the first to take a B-Step in adopt-
commit-max object C[i] and thus its B-Step is B0

i (1, vm). Hence 
Archipelago decides due to Lemma 4.4, which contradicts our ini-
tial assumption. Therefore, there is at least one process pb that 
performs B0

i (·, ·) between rounds r + 1 and r + x + 1. If process pb

takes step B0
i (·, ·) in a round smaller than r + x, then it performs 

R〈i + 1, ·〉 before round r + x + 2 since process pb has to take con-
tinuous steps because pa is suspended from round r + 1 to round 
r + x + 1, a contradiction. Therefore, process pb performs a step 
Ai(v) with v > vm in round r + x − 1 and B0

i (0, v) in round r + x. 
The current execution is depicted in Fig. 6.

Due to Lemma 4.3, process pb must be suspended in round 
r + x + 1, as well as in round r + x + 2. Since otherwise, if pro-
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cess pb is not suspended in rounds r + x + 1 and r + x + 2, this 
implies that process pb takes an R0〈i + 1, v〉 step, where v > vm . 
Due to Lemma 4.3, this implies that no process proposes vm to 
all upcoming adopt-commit-max objects, because all R〈i +1, ·〉 ap-
pear after round r + x + 1, which contradicts the if-statement of 
our lemma. Since process pb is suspended in round r + x + 2 and 
at most one process can be suspended in each round, process pa

takes an R0〈i + 1, vm〉 step in round r + x + 2.
We are therefore in the setting of Fig. 7 that is exactly the same 

execution pattern as the one in Fig. 3.
To conclude, given an adopt-commit-max object C[i] where the 

minimum value proposed is vm , for value vm to be proposed in the 
next adopt-commit-max object C[i +1], it has to be that the execu-
tion is as shown in Fig. 3. In other words, there is some process pa

that takes an A0
i (vm) step alone and, before pa performs Bi(1, vm), 

some other process pb performs A+i (v) and B0
i (0, v), etc. �

Lemma 4.8. In an execution α, consider V f = {v : ∃Ai(v) ∈ α}, then for 
any A j(v) step with j ≥ i + 3 in α, it is the case that v > min(V f ) or 
the algorithm decides.

Proof. The proof is by contradiction and the idea is to apply 
Lemma 4.7 on three consecutive adopt-commit-max objects (C[i], 
C[i + 1], and C[i + 2]) and show that either the algorithm de-
cides or that vm (= min(V f )) does not propagate beyond these 
three adopt-commit-max objects. Due to Lemma 4.7 we know that 
all processes, except pa , pb execute continuously for at least four 
rounds. We also know that operating on an adopt-commit-max 
object in Archipelago has only three round-steps (R , A, and B). Be-
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� R〈i + 1, ·〉 step before round r + x + 2.

pa

pb

pc

.

.

.

. . . r− 1 r r+ 1 . . . r+ x−1 r+ x r+ x+1 r+ x+2 r+ x+3 . . .

· A0
i (vm) Bi(1, vm) · ·

· · · · A+i (v) B0
i (0, v) · · ·

· · · · · · · · ·

X X X X

Fig. 6. Process pb performs a step Ai(v) with v > vm in round r + x − 1 and B0
i (0, v) in round r + x.

� R〈i + 1, ·〉 step before round r + x + 2.

pa

pb

pc

.

.

.

. . . r− 1 r r+ 1 . . . r+ x−1 r+ x r+ x+1 r+ x+2 r+ x+3 . . .

· A0
i (vm) Bi(1, vm) R0〈i + 1, vm〉 ·

· · · · A+i (v) B0
i (0, v) ·

· · · · · · · · ·

X X X X

X X

Fig. 7. Execution pattern that appears when the minimum value propagates to the next adopt-commit-max object (x ≥ 2).
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.

.

.

. . . r− 1 r r+ 1 . . . r+ x−1 r+ x r+ x+1 r+ x+2 r+ x+3 . . .

· A0
i (vm) Bi(1, vm) R0〈i+1, vm〉 ·

· · · · A+i (v) B0
i (0, v) ·

· · · · · · · · ·

X X X X

X X

Fig. 8. Lemma 4.8 (1).
cause of this, after three adopt-commit-max objects, we can show 
that for adopt-commit-max-object C[i + 2], there are r′′ and x′′
such that a process takes a step R〈i + 3, ·〉 before some r′′ + x′′ + 2, 
which contradicts Lemma 4.7.

To prove this lemma, assume by way of contradiction that there 
is an execution α such that (1) the algorithm does not decide in α, 
(2) α contains an Ai(vm) step and (3) α contains an A j(vm) step, 
where j ≥ i + 3.

Due to Lemma 4.7, we know that if there is a j ≥ i + 3 with 
A j(vm), then the execution looks like Fig. 8. Because x ≥ 2, we 
have at least 4 continuous suspensions from round r + 1 to round 
r + x + 2.

Note that, in any execution, a process takes a sequence of steps: 
R〈i1, ·〉, Ai1 , Bi1 , R〈i2, ·〉, Ai2 , Bi2 , . . . where i1 < i2 < . . . . We show 
that all processes must perform certain steps in this sequence prior 
to certain rounds. One of the three steps that pc ’s takes in rounds 
r + 1, r + 2 or r + 3 is an R step that returns a value that is at least 
〈i, ·〉, since process pa performed an A0

i step in round r. Thus, by 
round r + x + 2, pc must perform an A j step with j ≥ i. Processes 
pa and pb have also performed a step Ai by round r + x + 2. So, 
every process in the system has performed an A j step with j ≥ i
by round r + x + 2.

By assumption, value vm does not get eliminated, and hence 
when the algorithm operates on adopt-commit-max object C[i +
1] we have the exact same execution as in Fig. 3 but for adopt-
commit-max object C[i +1]. See Fig. 9. Again, let pa′ and pb′ be the 
processes described in Lemma 4.7 with respect to Ai+1 and let pc′
be any other process. Note that in process pa′ is not necessarily the 
same as process pa , etc., since it could be that a different process 
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is the one that performs the A0
i+1(vm) now. For example, it could 

be that pa′ = pc and pb′ = pa . Also, note that round numbers are 
now based upon r′ �= r. By Lemma 4.7, no R〈i + 1, ·〉 occurs before 
round r + x + 2 and since pa′ does an R〈i + 1, ·〉 step before round 
r′ , we have r′ > r + x + 2. Thus, pc′ must perform a step A j with 
j ≥ i before round r′ . Then, pc′ takes at least four more steps by 
round r′ + x′ + 2. So, pc′ must perform a step Bk with k ≥ i + 1 by 
round r′ + x′ + 2. Processes pa′ and pb′ have performed step Bi+1
by round r′ + x′ + 2. So, every process performs a step Bk with 
k ≥ i + 1 by round r′ + x′ + 2.

Again, because of Lemma 4.7, this pattern of execution should 
appear for adopt-commit-max object C[i + 2]. Consider Fig. 10. 
Again, let pa′′ and pb′′ be the processes described in Lemma 4.7
with respect to Ai+2 and let pc′′ be any other process. By 
Lemma 4.7, no R〈i + 2, ·〉 step occurs before round r′ + x′ + 2
and since process pa′′ does such a step before round r′′ , we have 
r′′ > r′ + x′ + 2. Thus, pc′′ must perform a step Bk with k ≥ i + 1
before round r′′ . Then, pc′′ takes at least four more steps by round 
r′′ + x′′ + 2. Hence, by round r′′ + x′′ + 2, pc′′ must perform a step 
R〈�, ·〉 with � ≥ i + 3. This contradicts the fact that no R〈i + 3, ·〉
step occurs before step r′′ + x′′ + 2 dictated by Lemma 4.7. �

Lemma 4.8 implies Theorem 4.2, because either the algorithm 
decides or the minimum value proposed to an adopt-commit-max 
object C[i] does not propagate in any later adopt-commit-max ob-
ject C[ j] with j ≥ i + 3. Hence, due to the continual elimination of 
the current minimal value, eventually only one value gets proposed 
to an adopt-commit-max object and hence the algorithm decides. 
Finally, note that if we had devised Archipelago for binary consen-
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pa′

pb′

pc′

.

.

.

. . . r′− 1 r′ r′+ 1 . . . r′+ x′−1 r′+ x′ r′+ x′+1 r′+ x′+2 r′+ x′+3 . . .

· A0
i+1(vm) Bi+1(1, vm) R0〈i+2, vm〉 ·

· · · · Ai+1(v) B0
i+1(0, v) ·

· · · · · · · · ·

X X X X

X X

Fig. 9. Lemma 4.8 (2).
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pb′′

pc′′

.

.

.

. . . r′′− 1 r′′ r′′+ 1 . . . r′′+ x′′−1 r′′+ x′′ r′′+ x′′+1 r′′+ x′′+2 r′′+ x′′+3 . . .

· A0
i+2(vm) Bi+2(1, vm) R0〈i+3, vm〉 ·

· · · · A+i+2(v) B0
i+2(0, v) ·

· · · · · · · · ·

X X X X

X X

Fig. 10. Lemma 4.8 (3).
sus, this would not substantially simplify the proof. We would still 
need to prove that the minimum value, in this case 0, does not 
propagate in later adopt-commit objects.

Archipelago in the common case. In this section we show that 
Archipelago terminates in any �synchronous execution with up to 
f = n −1 faulty processors. Consider such an execution and let r be 
a round such that (1) the system has reached synchrony by round 
r and (2) each process p is either correct or p has stopped omit-
ting by round r. In such an �synchronous execution, Archipelago 
needs at most 5 rounds starting from round r in order to decide.

As in the proof of leaderless termination for Archipelago, we 
assume a model with n ≥ 3 processes. In this scenario, since pro-
cesses take steps without omissions starting from round r, every 
correct process p takes steps R , A, and B without suspensions 
somewhere between round r and r + 5. Each process p performs 
an R step at least by round r + 2, because p can perform step 
A in round r and then B in round r + 1. Consider a process p
that performs an R0〈i, v〉 step with the greatest 〈i, v〉 value. This 
means, that p immediately afterwards performs A0

i (v) and then 
B0

i (1, v) and due to Lemma 4.4 Archipelago decides. If multiple 
such processes perform R0〈i, v〉, then all the processes retrieve 
the same maximum value 〈i, v〉 from m (line 26) and hence pro-
pose the same value to adopt-commit-max object C[i] and perform 
steps A0

i (v) and B0
i (1, v) and hence the algorithm decides (see 

Lemma 4.4).
The above discussion implies that Archipelago satisfies termina-

tion, thus meaning that in an �synchronous execution, Archipelago 
decides. Furthermore, note that the Archipelago can withstand up 
to f = n − 1 faulty processors and decides in an �synchronous 
execution. Naturally, the message passing variant of Archipelago 
(Section 5) can only withstand up to f = (n − 1)/2 faulty proces-
sors.

5. Leaderless consensus in message passing

We now adapt Archipelago for the message passing model 
where f processes among n = 2 f + 1 can fail: f − 1 processes 
can fail by crashing (fail-stop) or fail to send or receive messages 
when they should (omission faults) and at most 1 additional pro-
cess can be suspended per round. For the sake of clarity, we refer 
to this new algorithm as omission fault tolerant Archipelago or OFT-
Archipelago for short. We consider a message passing model with 
a point-to-point reliable channel between any pair of processes.
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�synchronous−k in message passing. To preserve the definition 
of �synchronous−k in message passing, we first need to define 
the notion of round and suspension in message passing: In each 
round r, every (correct, non-suspended) process pi (i) broadcasts a 
message (called a request), (ii) delivers all requests that were sent 
to pi in r, (iii) sends a message (called a response) for every request 
it has delivered in (ii), and (iv) delivers all replies sent to it in r. 
Note that this notion of round involves 2 message delays, so it 
corresponds to two rounds in the “traditional” sense [23]. We say 
that a process p is suspended [4] in a round r, if p does not send 
any messages in r and does not receive any messages sent by other 
processes in round r.

Adapting Archipelago to message passing. One might be tempted 
to apply the Algorithm 4 to the ABD emulation [6], which imple-
ments a shared-memory abstraction from a set of processes that 
communicate by message-passing. However, this would require at 
least two message-passing rounds for each of the R-step, A-step
and B-step (one round for the write and one round for the parallel 
n reads of the collect) and it is unclear whether it would remain 
leaderless since Archipelago’s proof hinges on each step taking ex-
actly one round. This is why, Algorithm 5 combines the write and 
collect in a single round: the broadcasts in lines 14, 20 and 26 act 
as both the write and read invocations whereas the responses in 
lines 36, 39 and 42 confirm the write, and return all values written 
so far.

We defer the proof of correctness of OFT-Archipelago to Ap-
pendix A.

6. Byzantine leaderless consensus

We finally present BFT-Archipelago, the Byzantine fault tol-
erant (BFT) variant of Archipelago. As BFT consensus cannot be 
solved without synchrony with n ≤ 3 f [34], we assume the 
�synchronous−1 model where f processes among n = 3 f + 1 can 
fail: at most one is suspended and f − 1 can behave arbitrarily or 
be Byzantine. For simplicity of presentation, we also assume au-
thentication and we produce the proof that the result generalizes 
to the �synchronous−k model, where k ≤ f and f − k processes 
can be Byzantine.

The R-, A-, and B-Steps. BFT-Archipelago is depicted in Algorithm 6
and follows the same 3-step pattern as Archipelago, with the R-, A-
and B-Steps executed in consecutive loop iterations, called ranks.
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Algorithm 5 OFT-Archipelago: Archipelago in message passing.
1: Local state:
2: i, the current adopt-commit-max object, initially 0
3: R , a set of tuples, initially empty
4: A[0, 1, . . . ], a sequence of sets, all initially empty
5: B[0, 1, . . . ], a sequence of sets, all initially empty

6: Procedure propose(v):
7: while true do
8: 〈i, v ′〉 ← R-Step(v)

9: 〈flag, v ′′〉 ← A-Step(v ′)
10: 〈control, val〉 ← B-Step(flag, v ′′)
11: if control = commit then return val
12: else i ← i + 1

13: Procedure R-Step(v):
14: broadcast(R, i, v)

15: wait until receive (R-response, i, R) from f + 1 proc.

16: R ← R ∪ { union of all Rs received in previous line}
17: 〈i′, v ′〉 ← max(R)

18: return 〈i′, v ′〉

19: Procedure A-Step(v):
20: broadcast(A, i, v)

21: wait until receive (A-response, i, A[i]) from f + 1 proc.

22: S ← union of all A[i]s received
23: if S contains only one value val then return 〈true, val〉
24: else return 〈false, max(S)〉

25: Procedure B-Step(flag, v):
26: broadcast(B, i, flag, v)

27: wait until receive (B-response, i, B[i]) from f + 1 proc.

28: S ← union of all B[i]s received
29: if S contains only 〈true, val〉 for some val then
30: return 〈commit, val〉
31: else if S contains some entry 〈true, val〉 then
32: return 〈adopt, val〉
33: else return 〈adopt, max(S)〉

34: Upon reception of (R, j, v) from p:
35: Add 〈 j, v〉 to R
36: send(R-response, j, R) to p

37: Upon reception of (A, j, v) from p:
38: Add v to A[ j]
39: send(A-response, j, A[ j]) to p

40: Upon reception of (B, j, flag, v) from p:
41: Add 〈flag, v〉 to B[ j]
42: send(B-response, j, B[ j]) to p

• R-Step: process p gathers the rank and value of other processes 
with the aim to settle on a common (rank, value) at lines 17–24. 
Processes answer the R-broadcast (if they find it valid as we 
explain below) by sending their highest (rank, value).

• A-Step: processes broadcast their values and assess whether 
other processes have conflicting values with theirs. Lines 33–40
describe how a process answers to an A-broadcast, by sending 
its highest value and another value if it has received one.

• B-Step: a process may broadcast its value with the label true
to force other processes to adopt or commit it (lines 52–58). 
A process responds to a B-broadcast by checking the validity 
of the broadcast and then responding with its own B-value 
(lines 64–71).

Except for the messages containing the value proposed in step 1 
of rank 0, each message must be accompanied with a valid partial 
certificate (or it is ignored) as we explain below.

Certificates. Lines 73–91 describe how to build and check certifi-
cates. A partial certificate for a response message from pi to p j con-
tains the queries that justify this response. Below we distinguish a 
broadcast (i.e., query) from its response even though the response 
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is itself sent to all. A broadcast from pi justifies a response from 
p j for an R-Step if it contains the highest value encountered that 
appears in the response from p j . A broadcast from pi justifies a 
response from p j for an A-Step, if it contains the highest value v
and, if possible, any value from the response different from v . For 
a broadcast from pi to justify a response from p j for a B-Step, it 
must ensure the following: if the response contains only true, then 
the broadcast should contain true; if the response contains at least 
one true and false pair, then the broadcast should contain the true
pair, and any of the false pairs; if the response contains only false
pairs, then the broadcast should contain the pair among them with 
the highest value.

A partial certificate for a broadcast contains the union of the 
2 f +1 responses received during the previous step with the partial 
certificates for these responses. A complementing certificate at pi to 
a partial certificate for a broadcast (resp. response) comprises f +1
(resp. 2 f +1) responses received by p j to each of the queries com-
prised in the partial certificate.

6.1. BFT-Archipelago: proof of correctness

Theorem 6.1 (Validity). With no faulty processes, if some process decides 
v, then v is the input of some process.

Proof. If all processes are correct, given that all values have to be 
proposed by some process at some point, then the decided value 
was necessarily proposed by a correct process. Indeed, at each rank 
i, processes can only adopt a value that was proposed at some 
point. �

Before we can prove Agreement, we need two lemmas to show 
some Byzantine behaviors are impossible under our certificate sys-
tem.

Lemma 6.2. If a correct uninterrupted process B-broadcasts 〈true, v1〉
at rank i, then no process, even Byzantine, can R-broadcast a value dif-
ferent from v1 with a valid certificate at rank i + 1 or more.

Proof. Assume the B-broadcast of 〈true, v1〉 happened first. When 
a process R-broadcasts at a rank strictly above i, he must add a 
certificate of all messages and their signatures. In order to be con-
sidered as correct by correct processes, this process must, at the 
very least, provide the B-answers from 2 f + 1 processes that led 
him to R-broadcasting this value. Since it is impossible to forge a 
signature from another process, this process will have to show un-
altered answers from at least f +1 correct processes, which will all 
show the 〈true, v1〉 couple, proving that the process should neces-
sarily either commit or adopt v1.

Now consider by way of contradiction the case where a B-
broadcast of 〈true, v1〉 by a correct process was to happen after 
an R-broadcast of a value v2 different from v1 at a rank i + 1 or 
higher. That is not possible, because during its A-step i, the correct 
process would see the other value (which has necessarily been A-
broadcast at step i in order to obtain a valid certificate) and return 
a 〈 f alse, .〉. �
Lemma 6.3. Let (i, v) be the tuple that is R-broadcast with the highest 
rank i and a valid certificate. Then no valid certificate can be constructed 
by a Byzantine process for any R-response (i′, v ′) with i′ > i.

Proof. When sending a R-response, the process has to send with it 
a certificate for each value that it sends. In particular, this process 
would need to provide a certificate showing that at least one pro-
cess (possibly himself) rightfully R-broadcast such a (rank, value), 
which is impossible according to Lemma 6.2. �
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Algorithm 6 BFT-Archipelago in message passing with n = 3 f + 1.

1: Local state:
2: i, the current rank, initially 0
3: R , a set of tuples, initially empty
4: A[0, 1, . . . ] and B[0, 1, . . . ], two
5: sequences of sets, all initially empty
6: C a sequence of broadcasts ID with the
7: number of answers they have received

8: Procedure propose(v):
9: while true do

10: 〈i, v ′〉 ← R-Step(v)

11: 〈flag, v ′′〉 ← A-Step(i, v ′)
12: 〈contr, val〉 ← B-Step(flag, i, v ′′)
13: if contr = commit then return val
14: else i ← i + 1, v ← val

15: Procedure R-Step(v):
16: compile certificate C (empty at rank 0)
17: broadcast(R, i, v, C)

18: wait until (receive valid (Rresp, i, R, C)

19: from 2 f + 1 processes)

20: R ← R ∪ {union of all valid Rs received
21: in previous line}
22: 〈i′, v ′〉 ← max(R)

23: R ← max(R)

24: return 〈i′, v ′〉

25: Upon delivering (R, j, v, C) from p:
26: if reliability check(R, j, v, C) then
27: R ← max(〈 j, v〉, R)

28: b ← bcast responsible for R[ j]’s value
29: send(Rresp, j, R, sig, b) to all
30: else ignore message from p

31: Procedure A-Step(i, v):
32: compile certificate C
33: broadcast(A, i, v, C)

34: wait until receive valid (Aresp, i, A[i])
35: from 2 f + 1 processes

36: S ← union of all A[i]s received
37: if (S contains at least 2f+1 A-answers
38: containing only val) then
39: return 〈true, val〉
40: else return 〈false, max(S)〉

41: Upon delivering (A, j, v, C) from p:
42: if reliability check(A, j, v, C) then
43: if v /∈ A[ j] and |A[ j]| < 2 then
44: add v to A[ j]
45: else if v > max(A[ j]) then
46: min(A[ j]) ← v

47: b ← bcast responsible for A[ j]’s value
48: send(Aresp, j, A[ j], sig, b) to all
49: else ignore message from p

50: Procedure B-Step(
∫
, i, v):

51: compile certificate C
52: broadcast(B, i, ∫ , v, C)

53: wait until receive valid (Bresp, i, B[i])
54: from 2 f + 1 proc.

55: S ← array with all B[i]s received
56: if |{〈true, val〉 ∈ S}| ≥ 2 f + 1 then
57: return 〈commit, val〉
58: else if |{〈true, val〉 ∈S}| ≥ 1 then
59: return 〈adopt, val〉
60: else return 〈adopt, max(S)〉

61: Upon delivery (B, j, ∫ , v, C) from p:
62: if reliability check(B, j, v, C) then
63: m ← max(B[ j][0].v, B[ j][1].v)

64: if |B[ j]| < 2 then add 〈∫ , v〉 to B[ j]
65: else if (

∫ ∧ 〈∫ , v〉 /∈ B[ j]∨
66: ¬∫ ∧ v > m) then
67: B[ j][0] ← 〈∫ , v〉
68: b ← bcast resp. for B[ j]’s 〈∫ , vals〉
69: send(Bresp, j, B[ j], sig, b)

70: b ← resp. for B[ j]’s 〈∫ , vals〉
71: send(Bresp, j, B[ j], sig, b) to all
72: else ignore message from p

73: Reliability check broadcast(X, i, v):
74: if |{bcast-answers ∈ C}| > f then
75: return true
76: check that |C| ≥ 2 f + 1 messages
77: check signatures of those messages
78: check if |{bcast-answers}| > f
79: if X = R then
80: check (i, v) is correct according to
81: signed B-answers received and step B
82: else if X = A then
83: check (i, v) is correct according to
84: signed R-answers received and step R
85: else if X = B then
86: check (i, ∫ , v) is correct according to
87: signed A-answers received and step A
88: return true if all checks pass,
89: false otherwise

90: To compile a broadcast certificate, list all 2 f + 1 answers to the previous step broadcast received during the previous step.
91: To reliably check response (check if a response is valid), check if, for the broadcast(s) originating its value we have received 2 f + 1 responses to that broadcast.
Theorem 6.4 (Agreement). Let p1 and p2 be two correct processes. If p1
and p2 return 〈commit, v1〉 and 〈commit, v2〉 then v1 = v2 .

Proof. Consider that both p1 and p2 are correct. Assume by con-
tradiction that v1 �= v2.

First, assume they both commit using the same rank i in A and 
B. Then this means both p1 and p2 saw, during their B-step line 
56, at least 2 f + 1 〈true, v1〉 and 〈true, v2〉 respectively. Since pro-
cesses can only ever send one B-answer to each process, it means 
that p1 and p2 both received B-answers from at least f +1 correct 
processes. If we consider f processes to be possibly Byzantine, this 
leaves only 2 f +1 correct processes. Hence, there is at least one of 
these correct processes which will answer to both p1 and p2. One 
of them will be answered second and will see the value proposed 
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by the other, and therefore cannot commit its own value. Hence, it 
is impossible for two correct processes to commit different values.

For different ranks i and j, assume now without loss of gen-
erality that one of those two processes, say p1, commits v1 using 
Bi and p2 commits v2 using B j with j > i. Then this means p1

saw, during its B-step line 56, at least 2 f + 1 sets containing only 
〈true, v1〉, meaning that no other process had yet B-broadcast an-
other value or that any process B-broadcasting in the same round 
will have to either adopt or commit v1 (indeed, another process 
would see at least one B-answer from a correct process containing 
〈true, v1〉 and would hence at least adopt, maybe commit v1).

Now there are two possibilities: either no other process has yet 
run an R-step at a rank strictly higher than i. Then the max func-
tion prevents it from jumping directly ahead of rank i. In this case, 
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before advancing to rank i + 1, p2 has to go through rank i. Notice 
that no Byzantine process can pretend to have advanced past rank 
i without actually providing the signed messages that led to it, i.e. 
actually advancing through steps while acting like a normal pro-
cess (cf. Lemma 6.3). Thus it is certain that p2 will see at least one 
〈true, v1〉 in his B-answers from rank i. It will thus either commit 
or adopt it. Therefore, all correct processes who reach rank i +1 by 
incrementing their rank (line 14) will propose value v1. Other pro-
cesses who run an R-step after that will be able to jump straight 
to the highest R-visited rank and will R-return value v1, because 
there is no value different from v1 past rank i. Hence no two cor-
rect processes can decide on different values. �
Lemma 6.5. The R-Step satisfies the following properties:

• Validity For a fixed i, if some correct process returns v, then v was 
the input of some process.

• Monotonicity If a correct process p returns (i, vi) in an R-Step and 
p returns ( j, v j) in a later R-Step, then j ≥ i and v j ≥ vi .

Proof. • Validity At line 24 (i′, v ′) (the value returned by the R-
Step) is computed as the maximum of all tuples ever received, 
which must in turn have been broadcast at line 17 by some 
process (we can be sure that there are at least f + 1 correct 
processes that proposed a value because there at most f faulty 
processes and we wait for a quorum of 2 f + 1 answers). Hence 
all values that appear have been proposed by some process.

• Monotonicity Assume by contradiction that some correct pro-
cess p returns (i, vi) in R-Step r1 and later returns ( j, v j) in 
R-Step r2 such that ( j, v j) < (i, vi). Because R always keeps the 
maximum element, it is impossible to later R-return a smaller 
element, thanks to the max function. �

6.2. BFT-Archipelago: proof of leaderless termination

In this section we prove that BFT-Archipelago satisfies leader-
less termination.

The key idea of the proof is that in order to prevent termina-
tion, processes have to release some higher value during the A-step
to prevent processes from seeing only “true” messages. But this 
means the value will be seen by O (n) processes and hence the 
smaller value will be discarded. As it consumes a value to delay 
the algorithm by O (1) rounds, and there are at most n different 
values, after O (n) rounds there will be only one value left, which 
will be committed. Before we prove that BFT-Archipelago (Theo-
rem 6.10) satisfied leaderless termination, we need to prove the 
following lemmas.

Lemma 6.6 (Commitment). If no process R-broadcast anything other 
than the same (i, v), then all correct processes must output 〈commit, v〉.

Proof. Since all the ranks and values coming in R-answers are 
identical, all correct processes will R-return (i, v) and Byzantine 
processes cannot present a valid A-broadcast with any value other 
than v .

Hence all correct processes will A-broadcast v . All valid A-
answers will contain only v and hence all correct processes will 
A-return 〈true, v〉. Therefore, no Byzantine process can present a 
valid B-broadcast with anything other than 〈true, v〉.

Hence all correct processes B-broadcast 〈true, v〉 and can only 
receive valid B-responses containing only 〈true, v〉 or invalid B-
responses which will be ignored. Therefore, all correct processes 
will B-return 〈commit, v〉. �
Lemma 6.7. All correct processes eventually receive 2 f + 1 replies to 
their R, A or B-broadcasts.
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Proof. Once GST is reached, all messages eventually arrive. The 
certificate of a correct process p will therefore eventually get ac-
cepted by any correct process as (i) all calculations made are 
correct and (ii) all broadcasts referenced in the certificate can be 
checked as valid by all correct processes as soon as they receive 
f + 1 responses to each of those broadcasts. As p checked be-
fore accepting responses in the previous step that all broadcasts 
referenced in the next certificate had received 2 f +1 responses re-
ceived by p, amongst which f + 1 were made by correct processes 
and hence were sent to all processes (and eventually received). �
Lemma 6.8. With the hypothesis that processes only get interrupted for 
whole rounds, it is not possible for a Byzantine process to make correct 
processes R-return different values after GST and round synchronization.

Proof. Let us recall that all messages are signed, therefore Byzan-
tine processes cannot make up fake messages that are not coming 
from themselves.

If a Byzantine process sends its proposed (rank, value) to all 
correct processes, either the certificate is invalid and it is ignored, 
either it is valid and all correct processes will see the (rank, value)
in at least f + 1 R-answers and all R-return the same value.

If the Byzantine process decides to R-broadcast only to some 
correct processes, there are 2 cases. If the Byzantine process R-
broadcasts to f or less correct awake processes, then some pro-
cesses may not see this value at all, and those who see it will see 
at least f + 1 R-answers not containing that value, and can there-
fore deduce it was sent fraudulently and ignore it.

If the Byzantine process R-broadcasts to f + 1 or more awake 
processes, then all correct processes will receive at least one R-
answer containing that value. Hence if the value is big enough to 
be the max of the values R-broadcast, it will be R-returned by all 
correct awake processes. �
Lemma 6.9. There cannot be a 〈true, v1〉 and a 〈true, v2〉 B-broadcasts 
with valid certificates and v1 �= v2 .

Proof. In order to have a valid certificate, a process would need 
to show proof of 2 f + 1 different processes providing A-answers 
containing only v1 (respectively v2), which amounts to 4 f + 2
different answers. Since there are only f Byzantine processes, it 
means that at least one correct process answered to both and will 
therefore show at least one A-answer containing (v1, v2). Hence, 
no valid certificate for two different values with the true flag can 
be produced. �
Theorem 6.10. In every �synchronous−1 execution of BFT-Archipelago, 
every correct process decides.

Proof. Assume we have reached GST. We will study what happens 
during the B-step and the following R-step. Remember that be-
cause of Lemma 6.9, no two different values can be B-broadcast 
with the label “true” and a valid certificate. Hence only two cases 
are available: either all values B-broadcast at rank i are flagged as 
“false”, or only one of them is flagged as true.

Assume all processes only B-broadcast values flagged as false. 
Either all those values are the same, in which case we already have 
only one value that can be R-broadcast with a valid certificate. Ei-
ther there are some different values. Let us call vmin the smallest of 
those values. The fact that all values are flagged as false indicates 
that all correct processes have encountered at least two different 
values during their previous A-step, and thus have discarded the 
minimum one(s). As processes can only ever R-broadcast greater 
or equal values due to the max function at every step, it means 
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that all correct processes have discarded at least one value dur-
ing the A-step. As the number of values and processes are finite, 
there will eventually be only one value left. Assume now all val-
ues B-broadcasted are flagged as false but one (if all values are 
flagged as true, all correct processes commit). Let us call that value 
vtrue . The number of processes with flag false at rank i is either 
O (n), in which case we only need to mention that those processes 
have each encountered different values at step A (which is why 
they have a “false” flag) and hence have all discarded at least one 
value. Now let us assume by way of contradiction that there are 
only O (1) of those processes. We will show that this is impos-
sible. Without loss of generality, we are considering the group of 
processes which are in the highest rank i. The fact that those O (1)

processes delivered some answers to receive the flag “false” means 
that there were 2 f + 1 correct uninterrupted processes to deliver 
those answers. Those processes (which total amounts to O (n)) can 
be either in steps R, A or B. We will now explore what happens 
if a O (n) of those processes are in those three cases. As there are 
at least 2 different values delivered by each 2 f + 1 different pro-
cesses, then there are at least f + 1 processes that delivered both 
values. Let us consider those processes. Consider the O (n) pro-
cesses in step R. those processes will take step A afterwards and 
will therefore see the (at least two) values they have delivered. 
Hence they will also A-return a false, and hence there were O (n)

processes with flag “false”, which is a contradiction. Consider the 
O (n) processes in step A. Then those processes have delivered dif-
ferent values in their A-responses, hence they will also A-return a 
false, and hence there were O (n) processes with flag “false”, which 
is a contradiction. Consider the O (n) processes in step B. At the 
same round where they were uninterrupted and they delivered the 
A-responses that led to the “false”, they must have B-broadcast the 
value with flag “true”. When uninterrupted, the 2 f + 1 processes 
will process the reliable-B-broadcast of the “true” at the same pace 
as the reliable-B-broadcast of the values in “false” but with some 
overhead. Hence the value with flag “true” will be delivered before 
the ones with “false”, and all the processes with “false” will have 
to adopt that value and at the next R-step only the value flagged 
“true” can be R-broadcast with valid certificate.

Hence at each suite of 3 steps R, A and B taken by all processes 
there are O (n) processes which discard at least one value each. As 
there are only O (n) different values at most, there will be at most 
O (n) rounds before there is only one value left to be R-broadcast 
(with a valid certificate).

Due to Lemma 6.6, when that happens all correct processes will 
commit within 5 rounds. �
7. Discussion and complexity analysis

Termination. In addition to leaderless termination (Theorem 4.2), 
Archipelago satisfies termination for n ≥ 3, meaning that in an 
eventually synchronous [14] execution, every correct process even-
tually decides. In such an execution, Archipelago needs at most 5 
rounds, after the global stabilization time [23] and round synchro-
nization (i.e., all processes start and end a round at the same time).

Fast path of BFT-Archipelago. The common-case performance of 
BFT-Archipelago can be improved by executing an optimistic fast 
path under favorable conditions (e.g., synchrony, no failures, no 
contention), and falling back to a robust path when these con-
ditions are not met. This can be achieved with the Abstract 
scheme [8] as it allows chaining multiple BFT protocols, called Ab-
stract instances, that can abort and fall back to the next instance. 
In particular, the Backup wrapper allows any full BFT protocol to 
become an Abstract instance. Since BFT-Archipelago is a full BFT 
protocol, it is amenable to a Backup instance, and thus can be ac-
celerated with Quorum fast path that can decide in two message 
delays.
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Complexity of BFT-Archipelago. BFT-Archipelago terminates deter-
ministically by exchanging and storing at most O (n4) messages 
and bits (each message is of length O (1) bits), and terminates 
within O (n) rounds and O (n4) calculations and signature checks. 
BFT-Archipelago is resilient optimal [23] and time optimal [25,22]. 
BFT-Archipelago also has the same communication complexity as 
PBFT [15] and DBFT [19].

In particular, the message length is O (1) bits because the al-
gorithm broadcasts (i) a local register (R, A or B) of size O (1)

messages, each containing a certificate, (ii) i and v of fixed length 
O (1), (iii) a flag of length 1 = O (1) and a (iv) signature of length 
O (1). A response contains O (1) messages (one or two to be pre-
cise). Each of these messages is certified as having been rightfully 
broadcast, but only by the (2 f + 1) answers that the processes 
have received. Hence the length of an answer is O (1). The full 
proof of complexity can be found in the proof of Theorem 6.10, 
which depicts the number and sizes of messages sent. Below, we 
give a quick additional sketch of the complexity for pedagogical 
purposes:

For all correct processes to complete the calculations necessary 
to truthfully go through a whole rank, it takes (at worst) each of 
the O (n) processes O (n) broadcasts, which leads in total to O (n2)

broadcasts, each of length O (1) bits. For each broadcast there are 
O (n2) responses exchanged of length O (1) bits each, for a total 
amount of O (n) ∗ (O (n2) ∗ O (1) + O (n2) ∗ O (n) ∗ O (1)) = O (n4) bits 
exchanged in the worst case in order to have all of the processes 
proceed through a rank. After GST, we need at most O (n) rounds 
taken by all processes to decide. However, as can be read in the 
proof of Theorem 6.10, each process will not have to perform the 
computations executed above more than O (1) time; most of the 
rounds are only performed by one process that has been delayed 
either by byzantine processes or simply because it was interrupted, 
and hence most of the processes, although alive, do not broadcast 
and only respond. This is why we have a total complexity of O (n4).

8. Evaluation

In this section, we implement BFT-Archipelago as a state ma-
chine replication (SMR) and compare it against the HotStuff BFT 
SMR [47] also used by Libra, the blockchain designed by Face-
book [1], because it is the most communication-efficient SMR 
we know of. Specifically, our experiments aim at answering two 
questions: (a) is the performance BFT-Archipelago suitable for a 
real world setup? and (b) can we confirm empirically that BFT-
Archipelago is more robust than a leader-based approach? We 
answer the first question in Section 8.2 by showing that BFT-
Archipelago exhibits better performance than HotStuff in a WAN 
setup. We answer the second question in Section 8.3 by showing 
that faults impact negatively the throughput of HotStuff but not 
BFT-Archipelago’s.

8.1. Experimental setup

We implement BFT-Archipelago in Java using the BouncyCastle2

library for cryptographic operations, using ecdsa with the curve
secp256k1 and sha256 cryptographic primitives and the stan-
dard java.nio library for network primitives. We optimized our 
BFT-Archipelago SMR implementation using batching and pipelin-
ing. As BFT-Archipelago is leaderless, we benefited from the dis-
tributed pipelining [45] to have distributed nodes spawning P = 3
BFT-Archipelago consensus instances in parallel. By contrast, Hot-
Stuff centrally pipelines up to two consensus instances due to its 

2 https://www.bouncycastle .org/.

https://www.bouncycastle.org/
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Fig. 11. Throughput and Latency of BFT-Archipelago and HotStuff in Europe.

Fig. 12. Throughput of BFT-Archipelago and HotStuff in Europe with two crash faults.
leader-based nature. Instead of proposing a single value, each BFT-
Archipelago replica accumulates up to B = 20000 transactions in 
a batch and then proposes this batch as a single value. When 
a replica transfers the same batch to another replica more than 
once, it sends the hash of this batch instead of the batch itself to 
save bandwidth. As HotStuff requires instead dedicated clients to 
request all servers, it can only exploit hashes to encode each indi-
vidual transaction.

We deploy BFT-Archipelago and HotStuff on Amazon EC2 and 
evaluate their performance utilizing 4 or 8 nodes distributed 
evenly in four datacenters in Frankfurt, London, Ireland and Paris. 
For every experiment we use c5.xlarge instances. Each instance has 
4 vCPU and 8 GB of memory. In each datacenter, we also deploy an 
additional c5.xlarge instance to act as a set of clients. The RTT be-
tween two datacenters is consistently between 10 ms and 30 ms. 
The RTT between two machines in the same datacenter is negligi-
ble.

We use the official version of HotStuff written in C++. It uses 
the Salticidae library for network communication and its cryp-
tographic primitives, which are the same as for BFT-Archipelago. 
HotStuff also uses batching and pipelining as an optimization. Each 
HotStuff replica proposes a batch of B transaction hashes as a sin-
gle value in its consensus instances. Additionally, HotStuff replicas 
always execute P consensus instances in parallel. In all experi-
ments, we use B = 400 and P = 3 for HotStuff which are the de-
fault values and the ones described in the original publication [47].

8.2. Performance in WAN

In a first experiment, we compare the throughput and latency 
of BFT-Archipelago against HotStuff when deployed on 4 server 
nodes located in different data centers. The Fig. 11a shows the 
throughput of BFT-Archipelago and HotStuff during a 50 seconds 
experiment. The throughput is averaged over time in a 5 sec-
onds sliding window. We observe that the throughput of BFT-
Archipelago is between 2× and 3× higher than the throughput 
of HotStuff. We explain this difference by two factors: the absence 
of a single point of contention in BFT-Archipelago and the batch-
ing optimization of BFT-Archipelago which consumes less band-
width than in HotStuff. Moreover, we observe that the throughput 
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BFT-Archipelago oscillates with an amplitude of 20 Kops/s. This 
is because the BFT-Archipelago implementation uses very large 
batches whose transmission time tends to vary a lot in WAN se-
tups. Additionally, Fig. 11b shows the average transaction latency 
of BFT-Archipelago and HotStuff. We observe that the latency of 
BFT-Archipelago is consistently lower than 0.7× the latency of Hot-
Stuff. This shows that for a small network, BFT-Archipelago pro-
vides a good throughput, even compared to a state of the art BFT 
SMR. Note that we do not evaluate the algorithms with a large 
number of nodes, this is because HotStuff is known to not scale: 
its performance decreases with the system size [47] and similarly 
the size of certificates in BFT-Archipelago also prevents us from 
scaling to very large number of nodes.

8.3. Fault tolerance

In a second experiment, we compare the throughput of BFT-
Archipelago against HotStuff under crash failures. To this end we 
deploy both SMR on 8 server nodes, 2 in each datacenters. At 
t = 60 seconds, we simulate the crash of one server with id 0, 
in the Frankfurt datacenter, by killing the server process with
SIGKILL. At t = 80 seconds, we also crash the server with id
1, still in the Frankfurt datacenter. The Fig. 12 shows the evo-
lution of throughput over time for BFT-Archipelago and HotStuff. 
The throughput is averaged over time in a 5 seconds sliding win-
dow. We observe that after the crash of the first server, which is 
the leader in HotStuff, the throughput of HotStuff falls from 22.5 
Kops/s to 14.5 Kops/s while the throughput of BFT-Archipelago os-
cillates between 15 Kops/s and 33 Kops/s before and after the first 
crash. We explain the performance drop in HotStuff by the fact it 
is a leader-based system and the crash of its leader negatively im-
pacts the whole system throughput. In contrast, BFT-Archipelago 
which is leaderless is left unaffected by the crash of one server. 
Additionally, we observe that after the crash of the second server, 
the throughput of HotStuff collapses to 0 and never recovers while 
the throughput of BFT-Archipelago increases to an interval be-
tween 30 Kops/s and 35.5 Kops/s. The complete crash of HotStuff 
is unexpected since the HotStuff algorithm tolerates t = 2 faults 
when n = 8. We conjecture that the increased throughput of BFT-
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Archipelago after the second crash is caused by the batch broadcast 
made faster by the reduced number of nodes.

9. Related work

Given the notorious impact of a leader on consensus perfor-
mance [36,10,30,7,39,29,28,2,13,19,46,45,9], it is surprising that the 
leaderless concept has never been precised.

The leader has become a limitation to scale consensus to large 
blockchain networks. Crain et al. [19] consider the Democratic BFT 
(DBFT) consensus algorithm as leaderless. DBFT is a multivalue 
consensus algorithm at the heart of the Red Belly Blockchain [20]
whose n proposers bypass the leader bottleneck. It spawns n con-
current binary consensus instances, each relying on a weak coor-
dinator to help converge when many correct processes propose 
distinct values. Although DBFT could use n different weak coor-
dinators, its binary consensus is not leaderless according to our 
definition.

Dispel [45] is a pipelined SMR invoking the Democratic BFT 
consensus algorithm. An empirical comparison of Dispel with Hot-
Stuff also confirms our observation: isolated failures affect the per-
formance of HotStuff significantly.

In a brief announcement [35], Lamport proposed a high level 
transformation of a class of leader-based consensus algorithms into 
a class of leaderless algorithms using repeatedly a synchronous vir-
tual leader election algorithm where all processes try to agree on a 
set of proposals. In a corresponding patent document [33], Lamport 
explains that during a period of asynchrony, if the virtual leader 
election fails, then the consensus algorithm may not progress [35]. 
Our adopt-commit-max object of Archipelago allows processes to 
converge towards a unique value, hence sharing similarities with 
the proposal of some virtual leader. Yet, neither a leaderless defi-
nition nor a virtual leader specification were given by Lamport.

Borran and Schiper proposed a so-called “leader-free” consen-
sus algorithm [10] without presenting however any precise leader-
freedom definition. The algorithm has an exponential complexity, 
which limits its applicability.

Interestingly, SMR algorithms that rely on multiple leaders (e.g., 
Mencius [36], RBFT [7]) do not necessarily rely on a leaderless con-
sensus algorithm.

Moraru et al. [39] used multiple “command leaders” in EPaxos. 
Each leader tries to commit one command. When commands have 
dependencies only one of the leaders can get its command com-
mitted at a time, as if there were successive leader-based consen-
sus instances. If a leader fails after receiving a positive acknowl-
edgment from a fast quorum of n − 1 processes, it rejoins with a 
new identifier and a greater ballot without being able to acknowl-
edge the previous commit message.

Recently, some errors [44,43] were found in both random-
ized [40,38] and multi-leader consensus algorithms [39], indicating 
that getting rid of the leader is error prone.

10. Conclusion

In this paper, we demonstrated the existence of leaderless in-
dulgent consensus algorithms. Our definition of leaderless is gen-
eral. It relies on the ability to terminate despite a specific kind of 
fault, interruption, which complements the classical crash, omission 
or Byzantine faults. An interruption can be seen as a form of weak 
synchrony. Our evaluation of a pipelined state machine replication 
built on top of the Byzantine fault tolerant consensus algorithm 
demonstrates the applicability of such algorithms to the permis-
sioned blockchain context.
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Appendix A. OFT-Archipelago: proof of correctness in message 
passing

We now prove the correctness of OFT-Archipelago or Archipel-
ago in its message-passing version. All results and line numbers in 
this sub-section refer to Algorithm 5.

Lemma Appendix A.1. The R-Step satisfies the following properties:

• Validity For a fixed i, if some process returns v, then v was the input 
of some process.

• Monotonicity If process p returns (i, vi) in an R-Step and p returns 
( j, v j) in a later R-Step, then j ≥ i and v j ≥ vi .

Proof. • Validity At line 17 (i, v ′) (the value returned by the R-
Step) is computed as the maximum of all tuples ever received, 
which must in turn have been broadcast at line 14 by some 
process.

• Monotonicity Assume by contradiction that some process p re-
turns (i, vi) in R-Step r1 and later returns ( j, v j) in R-Step r2
such that ( j, v j) < (i, vi). During r1, p selected and returned 
(i, vi) as the maximum element of its local R set. Since ele-
ments can only be appended to a process’s R set, (i, vi) will 
still be in R during r2. Thus, p cannot select and return a tuple 
smaller than (i, vi) during r2. We have reached a contradic-
tion. �

Lemma Appendix A.2. For a fixed i, an A-Step followed by a B-Step
corresponds to an adopt-commit object.

Proof. Validity holds because at lines 23, 24, 30, 32, and 33, pro-
cesses only return values that were sent at lines 39 or 42. In turn, 
these values must be input values of some process who broadcast 
them at lines 20 or 26.

Termination holds because the only waiting is done at lines 21
and 27; processes always wait for f + 1 responses; since f + 1 =
n − f , processes eventually receive these responses.

Commitment holds because if all processes enter A-Step with 
the same value v , then the check at line 23 will succeed and all 
processes will enter B-Step with (true, v); thus the check at line 29
will succeed and all processes will return (commit, v) in the B-Step.

Agreement. Assume by contradiction that process p outputs 
(commit, v) and process p′ outputs (·, v ′) with v �= v ′ . Then p must 
have received B-responses containing only (true, v) from a set R p

of f +1 distinct processes; p′ must have also received B-responses 
from a set R p′ of f + 1 distinct processes. Since f + 1 > n/2, R p

and R p′ must intersect in at least one process q.
Let S be the union of all B[i]s received by p′ in B-responses. 

We distinguish three cases, based on the number of distinct values 
val for which the S contains (true, val).
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• S does not contain any (true, val) tuples. In this case, q’s B-
response to p′ must contain a ( f alse, val) tuple. If q responded 
to p before p′ , then by Lemma Appendix A.3 q’s B-response 
to p′ must include a (true, v) tuple — a contradiction. If q
responded to p′ before p, then by Lemma Appendix A.3 q’s B-
response to p must include ( f alse, val) — a contradiction.

• S contains (true, val) tuples for a single value val. Then val �=
v , otherwise p′ would either commit v or adopt v . Assume 
wlog the q responds to p before it responds to p′ . Then q’s 
response to p′ must contain both (true, v) and (true, val), con-
tradicting Lemma Appendix A.4.

• S contains more than one value v . This is impossible by 
Lemma Appendix A.4. �

Lemma Appendix A.3. For a fixed i, if a process p sends a B-response 
(B-response, i, B[i]) to some process q at time t and p sends a B-
response (B-response, i, B[i]′) to some process q′ at time t′ > t, then 
B[i] ⊆ B[i]′ .

Proof. This is because items can only be added to B[i] (line 41). �
Lemma Appendix A.4. For a fixed i, if two processes p and q broadcast 
(true, v) and (true, v ′) at line 26, then v = v ′ .

Proof. Assume not, then p must have received A-responses con-
taining only v from a set R p of f + 1 processes and q must have 
received A-responses containing only v ′ from a set R p′ of f + 1
processes. Since f + 1 > n/2, R p and R p′ must intersect in at least 
one process r. Assume without loss of generality r responded to p
first and then to q: then the response to q must also include v by 
Lemma Appendix A.3. We have reached a contradiction. �
Theorem Appendix A.5 (Validity). With no faulty processes, if some 
process decides v, then v is the input of some process.

Proof. The theorem follows by induction from the validity proper-
ties of the R-Step (Lemma Appendix A.1) and of the A- and B-Steps
(Lemma Appendix A.2). �
Theorem Appendix A.6 (Agreement). Let p1 and p2 be two correct 
processes. If p1 and p2 return 〈commit, v1〉 and 〈commit, v2〉 then 
v1 = v2 .

Proof. Consider that both p1 and p2 are correct, the proof is by 
contradiction. Assume that v1 �= v2.

First, assume they both commit using the same rank i in A and 
B. By Lemma Appendix A.2, an A-Step followed by a B-Step corre-
spond to (enforce the same properties as) an adopt-commit object. 
Thus, the theorem follows from the agreement property of adopt-
commit.

For different ranks i and j, assume now without loss of gener-
ality one of those two processes, say p1, commits v1 using Bi and 
p2 commits v2 using B j with j > i. Then this means p1 saw, dur-
ing its B-step line 29, at least f + 1 sets containing only 〈true, v1〉, 
meaning that no other process had yet B-broadcast another value 
or that any process B-broadcasting in the same round will have 
to either adopt or commit v1 (indeed, another process would see 
at least one B-answer from a correct process containing 〈true, v1〉
and would hence at least adopt, maybe commit v1).

Now there are two possibilities: either no other process has yet 
run an R-step at a rank strictly higher than i. Then the max func-
tion prevents it from jumping directly ahead of rank i. In this case, 
before advancing to rank i + 1, p2 has to go through rank i. Thus 
it is certain that p2 will see at least 1 〈true, v1〉 in his B-answers 
from rank i. It will thus either commit it or adopt it. Therefore, all 
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correct processes who reach rank i+1 by incrementing their rank 
(line 12) will propose value v1. Other processes who run an R-
step after that will be able to jump straight to the highest R-visited 
rank and will R-return value v1, because there is no value different 
from v1 past rank i. Hence no two correct processes can decide on 
different values. �
A.1. OFT-Archipelago: leaderless termination in message passing

We now prove that OFT-Archipelago satisfies leaderness termi-
nation.

Lemma Appendix A.7 (Commitment). If no process R-broadcast any-
thing other than the same (i, v), then all correct processes output 
〈commit, v〉.

Proof. Since all the ranks and values coming in R-answers are 
identical, all correct processes will R-return (i, v). Hence all cor-
rect processes will A-broadcast v . All A-answers will contain only 
v and thus, all correct processes will A-return 〈true, v〉. As a result, 
all correct processes B-broadcast 〈true, v〉 and can only receive 
valid B-responses containing only 〈true, v〉. Therefore, all correct 
processes B-return 〈commit, v〉. �
Lemma Appendix A.8 (Iterative elimination of values). Eventually only 
one value can be R-broadcast or all correct processes commit.

Proof. Assume we have reached GST. We study what happens dur-
ing the B-step and the following R-step. Remember that no two 
different values can be B-broadcast at the same rank with the label 
true (that would mean that two different processes had each seen 
during the A-step f + 1 answers containing only one value, which 
is impossible as there are only 2 f + 1 processes in all). Hence only 
two cases are available: either all values B-broadcast at rank i are 
flagged as f alse, or only one of them is flagged as true.

Assume all processes only B-broadcast values flagged as false. 
Either all those values are the same, in which case we already have 
only one value that can be R-broadcast with a valid certificate. Ei-
ther there are some different values. The fact that all values are 
flagged as f alse indicates that all correct processes have encoun-
tered at least two different values during their previous A-step, and 
thus have discarded the minimum one(s). As processes can only 
ever R-broadcast greater or equal values due to the max function 
at every step, it means that all correct processes have discarded 
at least one value during the A-step. As the number of values and 
processes are finite, there will eventually be only one value left. 
Assume now all values B-broadcast are flagged as false but one 
(if all values are flagged as true, all correct processes commit; no 
two different values can be flagged as true). Let us call that value 
vtrue . The number of processes with flag false at rank i is either 
O (n), in which case we only need to mention that those processes 
have each encountered different values at step A (which is why 
they have a “false” flag) and hence have all discarded at least one 
value. Now let us assume by way of contradiction that there are 
only O (1) of those processes. We will show that this is impos-
sible. Without loss of generality, we are considering the group of 
processes which are in the highest rank i. The fact that those O (1)

processes delivered some answers to receive the flag “false” means 
that there were f + 1 correct uninterrupted processes to deliver 
those answers. Those processes (which total amounts to O (n)) can 
be either in steps R, A or B at the time of sending the message. 
We will now explore what happens if a O (n) of those processes 
are in any of those three cases. If there are at least 2 different val-
ues each delivered by f + 1 different processes, then there is at 
least 1 process that delivered both values. Let us consider those 
processes.
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Consider the O (n) processes in step R. those processes will take 
step A afterwards and will therefore see the (at least two) val-
ues they have delivered. Hence they will also A-return a false, and 
hence there were O (n) processes with flag “false”, which is a con-
tradiction.

Consider the O (n) processes in step A. Then those processes 
have delivered different values in their A-responses, hence they 
will also A-return a f alse, and hence there were O (n) processes 
with flag “false”, which is a contradiction. Consider the O (n) pro-
cesses in step B. At the same round where they were uninterrupted 
and they delivered the A-responses that led to the “false”, they 
must have B-broadcast the message with flag “true”. When unin-
terrupted, the f + 1 processes will process the B-broadcast of the 
“true” at the same pace as the B-broadcast of the values in “false” 
but with some overhead. Hence the value with flag “true” will be 
delivered before the ones with “false”, and all the processes with 
“false” will have to adopt that value and at the next R-step only 
the value flagged “true” can be R-broadcast.

Hence at each series of 3 steps R, A and B taken by all pro-
cesses there are O (n) processes which discard at least one value 
each. As there are only O (n) different values at most, there will 
be at most O (n) rounds before there is only one value left to be 
R-broadcast. �
Theorem Appendix A.9 (Leaderless termination). In every �syn-
chronous−1 execution of OFT-Archipelago, every correct process decides.

Proof. Assume by the time we reach GST for every correct, unin-
terrupted process, and no process has yet committed (otherwise all 
processes are R-broadcasting the same value and Lemma Appendix
A.7 ensures termination within 3 steps).

The only way for processes not to commit is for some process 
to A-return a false flag. One way for that to happen is for two dif-
ferent processes (at least) to return different values from an R-step. 
This may happen if a higher value is received after the f + 1 first 
ones by some processes which will ignore it while some other will 
receive it as part of the f + 1 first ones and take it in considera-
tion. If that happens, however, that higher value will be disclosed 
to some new process. Either the value is A-broadcast to all pro-
cesses, in which case all processes will adopt it and the lowest 
value is discarded (in which case within O (n) rounds all values 
will be discarded and termination will happen due to Lemma Ap-
pendix A.7). Either some process does not receive that value (or 
receives it too late), and B-broadcasts another value with true. In 
this case, all processes will adopt that value and commit at the 
next B-step due to Lemma Appendix A.7. In both cases, termina-
tion happens within O (n) rounds. �
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